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The research presents the development and evaluation of a deep learning model designed for the
inference of elemental composition from X-ray photoelectron spectroscopy data. To accomplish
this, a synthetic dataset containing 78,600 spectra was generated using XPS parameter databases
and electron scattering theory with the transport approximation. The synthetic data encompasses
substances with varying numbers of atomic species, ranging from 2 to 5. Model performance and
uncertainty were assessed through Monte Carlo dropout predictions during testing. Our developed
model exhibited remarkable precision in predicting both carbon contamination and composition
vector components, culminating in an impressive coefficient of determination (2 = 0.999) that aligns
with the test dataset.

I. INTRODUCTION

X-ray photoelectron spectroscopy (XPS) method is
widely used in characterizing materials. XPS analysis is
the measurement of the composition and atomistic bond-
ing properties of materials. By irradiating a sample with
X-rays we obtain the kinetic energy and intensity of pho-
toelectrons emitted by the photoelectric effect[1]. X-ray
energy can be absorbed by one of the core electrons. The
energy needed to cause the core electron to be emitted
and subsequently detected is characteristic of each ele-
ment. This characteristic feature allows the use of bind-
ing energy to identify the elements present on the surface
of the material. Peak intensity at a specific binding en-
ergy usually displays the total number of photoelectron
counts per second. In some cases, overlapping or unre-
solved peaks may appear on the binding energy axis. It
is essential to examine the core levels and Auger lines for
each atom.

XPS can detect all elements except hydrogen and he-
lium with detection limits of approximately 0.1%–1%.
The relative amounts of the detected elements within the
analysis volume can be extracted from the intensities of
the photoelectron peaks. Peak positions, widths, relative
heights, and other information are necessary to deter-
mine the composition of the substance of interest. Since
XPS is extremely surface sensitive, care must be taken
to avoid surface contamination. Therefore, it is impor-
tant to observe the changes in XPS data before and after
the surface treatment of the material. Since each ele-
ment has its own unique binding energy, comparing the
peaks and binding energies in the spectrum can be used
to determine the composition of the elements present on
the sample surface. Binding energy is characteristic of
the chemical environment of the core-excited atom cor-
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responding structural characterization. Also, when the
chemical bonding state of an atom changes, the bind-
ing energy usually changes by a few eV, so the chemical
bonding state can be inferred from this change. In addi-
tion, XPS simultaneously provides chemical information
on the chemical structure, degree of carbon contamina-
tion, and oxidation state of the sample. Users typically
utilize database-driven software that relies on equipment
to obtain the elemental proportions of a material. Com-
putational prediction of core-electron binding energies is
also developed[2, 3].
XPS results can be challenging to interpret, in gen-

eral, although there is a database for binding energy
values[4, 5]. Sometimes XPS data are often misinter-
preted in the literature. Many factors in the experiment
affect binding energies in the XPS method. The binding
energies of different atomic features can even overlap, fur-
ther complicating the analysis. In fact, the generation of
photoelectrons is closely related to processes that result
from X-ray bombardment of a surface including emission
of a photoelectron, X-ray fluorescence, and emission of
an Auger electron.
By obtaining a variety of experimental measurement

data, it is possible to understand the general XPS mea-
surement data. It is also possible to infer XPS spectra
of materials with arbitrary compositions from sufficient
data. This is known as the traditional XPS analysis and
is widely utilized in both materials physics and indus-
trial research. Similarly, research has recently been con-
ducted on inferring composition ratios using deep learn-
ing method[6]. It can be seen that the ability to make
inferences from data can be achieved through machine
learning.
Recent advances in artificial intelligence have made it

possible to make systematic inferences that have never
been easily attempted before[7]. We started our research
with the question: can composition ratio prediction us-
ing artificial neural networks reach the level of prediction
of XPS expert-level analysis? In this work, we developed
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and tested a model for correlating XPS data with chem-
ical composition using probabilistic inference supported
by recent machine learning methods. At this point, it
would be natural to try to leverage artificial intelligence
to build models for predicting carbon contamination and
composition ratio that are as accurate as those of long-
time experts.

Section II provides machine learning details. Section
III presents and discusses model performance. Finally,
Section IV concludes the present work.

II. COMPUTATIONAL METHODS

We first prepared a synthetic dataset, then built a
model using a modern deep neural network and optimized
the model parameters using both training and validation
datasets. Finally, we used the model to show the pre-
cision of our predictions on a test dataset that was not
included in the training and validation. The National
Institute of Standards and Technology (NIST) provides
several types of XPS-related data and a useful program
for the simulation of XPS spectra (Simulation of Electron
Spectra for Surface Analysis (SESSA))[8, 9]. It is pos-
sible to generate a synthetic dataset for XPS by taking
into account composition and carbon contamination[10].
The neural network we built is faithful to modern deep
learning techniques. It was trained on a synthetic dataset
and computed on a validation dataset, so there was no
overfitting.

A Monte Carlo dropout approach[11] was utilized to
predict carbon contamination levels and composition ra-
tios. Typically, a Monte Carlo dropout approach is uti-
lized for more reliable predictions. Monte Carlo dropout
is a technique that extends the use of dropout to the
inference mode of a neural network. Unlike the usual
case, we also take advantage of the stochastic dropout
feature in prediction mode. It is solely based on a dif-
ferent set of neurons that are dropped out. In addition,
for each prediction, we have both mean and variance. It
utilizes the dropout layer, which is also enabled in in-
ference, to make multiple predictions on the same input.
From these multiple predictions, the mean and variance
can be calculated. To get a single mean and variance, we
made 200 independent predictions. The averaging step
smooths out the noise introduced by the dropout layers
and can lead to more accurate predictions.

A. synthetic data

In order to train a deep learning model with com-
plex and many parameters, a large amount of high-
quality data is required. It was impossible to make re-
peated measurements on such a large number of sam-
ples through real experiments, so we decided to use syn-
thetic data that exquisitely mimics the characteristics
of real XPS. We generated a synthetic dataset made

of 75000 + 600 + 3000 spectra based on XPS parame-
ter databases and electron scattering theory within the
transport approximation[10]. We tried to express char-
acteristics similar to data that can be obtained through
actual experiments by adding the SESSA database and
some realistic features. The SESSA provides synthetic
data using element parameters as arguments. We con-
sider random possible combinations of elements from the
list of Li, Be, B, C, ..., and Bi atoms except Pm, which
is not supported. Each virtual material is composed of
a random number from 2 to 5 of atomic species, with
variable stoichiometry ratios. Only Al kα source is used
in the present simulations.

Even if great care is taken during the actual experi-
ment, contamination from airborne substances such as
Carbon and Oxygen is inevitable. In the experiment,
the carbon contamination leads to an overall lower XPS
intensity[12]. We represent carbon contamination on
data by stacking the separated uniformly random depth
(from 0 to 40 Å) C5O layer flatly on top of the elements
layer. The chemical shift is related to the electronegativ-
ity of the nearest neighbor atoms.[13] This chemical shift
occurs in each peak in all element combinations, but it
is difficult to predict for all substances. We expressed
the chemical shift phenomenon in the data by applying a
random shift of up to 10eV to each peak. For the carbon
and oxygen peak, a shift of up to 0.5 eV was applied.
Also, there is a significant difference in the contribution
of each element in XPS. Therefore, if the ratio of elements
is used as is, it is impossible to calculate fairly for each
element in the loss calculation for the composition ratio.
Therefore, we created all spectra of the elements used
through SESSA and used the intensity of the maximum
peak of the element to create new relative intensity data
Ti and use it. This relative intensity is used to redefine
labels for the Deep Neural Network model. We use label
define as ȳi = q̄iTi(

∑
i q̄iTi)

−1.[14]

The completed spectra kinetic energy range was 400−
1486 eV on a 2048 energy point grid. The present net-
work takes as input the 2048 spectral points ({xj}, j =
1, 2, 3, ..., 2048.) intensity and produces two outputs, the
normalized carbon contamination level c(0 ≤ c ≤ 1),
indicating a normalized thickness (c = 1 means 40Å.),
and the normalized composition ratios ({ye}, 0 ≤ ye ≤
1,
∑81

e=1 ye = 1, e = 1, 2, 3, ..., 81.) of the 81 element. The
energy grid we used is generic without loss of general-
ity. This is because even if counting data is obtained
with different energy intervals, the XPS information can
be converted to the 2048 energy grid with appropriate
transformations.

SESSA offers both a Command Line Interface(CLI)
and a Graphical User Interface(GUI). Using the CLI,
we could obtain XPS data for two-layer materials for it-
eratively determined parameters(elemental composition,
contaminant layer thickness). The entire data genera-
tion process was executed on a 12-core processor. It in-
volved three processes for two data processing and one
process for management. The data processing processes
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have been separated depending on whether they depend
on SESSA or not. Data generation took around 10− 20
seconds per sample on average which highly correlated
to SESSA, and creating 75k samples took approximately
10 days.

B. deep learning model

The single neural network we used predicts each of
the two by itself. The first is the degree of carbon
contamination(0 ≤ c ≤ 1) and the second is the compo-

sition ratio(0 ≤ ye ≤ 1,
∑81

e=1 ye = 1, e = 1, 2, 3, . . . , 81).
As explained earlier, H and He are excluded from the
study. We built a model that simultaneously optimizes
the regression loss functions (contamination degree and
composition ratio) using multiple one-dimensional convo-
lutional neural network layers, pooling layers, multi-head
attention layers, dense layers, and dropout layers. Our
model is based on TensorFlow.

The model was trained using dropout with a dropout
rate of 0.1. A ‘softmax’ activation function for the final
layer is used to normalize the outputs so that

∑81
e=1ye =

1. A ‘sigmoid’ activation, is used to identify the level of
carbon contamination 0 ≤ c ≤ 1. Total number of train-
able parameters is 8775775. An ‘adam’ optimizer[15] and
the tuned loss functions allowed for robust training, with-
out overfitting. Using dropout, we can reduce concerted
learning among neurons, which may have led to over-
fitting. Overfitting occurs when the model has a high
variance. In this case, the model performs well on the
training dataset but does not perform properly on the
validation dataset.

The adoption of ‘ReLU (rectified linear unit)’ may eas-
ily be considered one of the few milestones in the deep
learning history. Activation function with ‘ReLu’ per-
mits the routine development of very deep neural net-
works. We used the ‘ReLU’ function as the activation
function unless it is the last layer that predicts the func-
tion value. The last layer for a prediction consists of a
dense layer. In general, a good method to prevent over-
fitting is to use a more complete training dataset. The
dataset should cover the entire range of inputs that the
model is expected to process. An additional dataset may
only be useful if it covers new cases.

We use the Monte Carlo dropout method[11] to make
predictions, so enabling probabilistic dropout also works
in prediction mode. From these predictions, we get both
the predicted value and the uncertainty about the pre-
diction. In the Monte Carlo dropout, multiple predic-
tions can be samples from a probabilistic distribution.
Thus, Monte Carlo dropout is a Bayesian interpretation
of dropout. Basically, the Monte Carlo dropout method
provides a way to obtain uncertainty estimates and model
confidence, which can be crucial in many machine learn-
ing applications.

C. loss functions

Mean squared logarithmic error(MSLE, L) is consid-
ered to be an improvement over using percentage-based
errors for training because its numerical properties are
better.

L =
1

81

81∑
e=1

{
log(1 + ye)− log(1 + yte)

}2
, (1)

where {ye} and {yte} are the network outputs and the
target values, respectively. It is less sensitive to outliers
than mean squared error since the logarithmic transfor-
mation compresses the error values. The loss function,
L is less sensitive to scale variation as it is a difference
of two log values which is the same as a log of the ra-
tio of the values. Due to the loss being log it penalizes
underestimates more than overestimates.
In statistics, the coefficient of determination denoted

R2, is the proportion of the variation in the dependent
variable (chemical composition) that is predictable from
the independent variables (XPS spectrum). In regres-
sion, the R2 coefficient of determination is a statistical
measure of how well the regression predictions approxi-
mate the real data points. In the best case, the predicted
values exactly match the true values, which results in
R2 = 1.

R2 = 1−
∑M

i=1(zi − zti)
2∑M

i=1(zi − z̄t)2
, (2)

where z̄t denotes the mean of the true values, zi denotes
data point, zti denotes true value, and M denotes the
number of data points associated with prediction. Even if
we define a single predictor that incorporates the carbon
contamination (c) and composition vector({ye}), we can
still calculate a statistically defined R2 value for many
test samples. We can interpret this problem as a re-
gression analysis that predicts 82 values, c, y1, y2, . . . , y81.
For example, once we have a test dataset, consisting of
1000 examples, then M = 82 × 1000. Our outputs of
the present neural network, both contamination (c) and
composition ratio ({ye}) can be viewed as a regression
problem. By utilizing R2 measures that are widely used
in regression analysis, we can quantify how accurately
the developed model predicts contamination and compo-
sition ratio. Usually, the larger the R2, the better the
regression model fits observations.

D. training dataset, validation dataset, and test
dataset

The validation dataset is used during the training
mode of the model to provide an unbiased evaluation of
the model’s performance. The test dataset, on the other
hand, is used after the model has been fully trained to
assess the model’s performance on a completely unseen
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FIG. 1. Loss functions are related to the prediction of the de-
gree of carbon contamination and the prediction of the com-
position ratio, respectively. Mean squared logarithmic error
(MSLE) is used for both contamination prediction and com-
position prediction. Total number of trainable parameters is
8775775. The training dataset size and the validation dataset
size are 75000 and 600, respectively.

dataset. We plotted the loss functions over the training
epoch in the Fig.1. We also plotted the loss functions for
the validation dataset on the model at the same time.
The loss functions are related to the prediction of the de-
gree of carbon contamination and the prediction of the
composition ratio, respectively. In our case, with a suffi-
ciently large data size, we verified that the present model
does not cause overfitting problems.

Thinking of the prediction of carbon contamination
and composition vector components as a regression prob-
lem, for our test dataset, we were able to achieve a preci-
sion equivalent to R2 = 0.999. Thus, the predicted values
are well match the true values for the test dataset. Espe-
cially, this precision means that the model is very good at
selectively predicting the atomic species that make up the
sample. This interpretation is just one analysis of how
well the model can differentiate between different atomic
species from the XPS data. And so, it is worth perform-
ing a maximum absolute error (L∞-norm) analysis on
the predictions, both carbon contamination and compo-
sition. The mean absolute error (mean of {| c − ct |},
0 ≤ c ≤ 1) in the carbon contamination prediction for
the test dataset is 0.1293. Here, braces represent sam-
ples. c and ct are predicted carbon contamination val-
ues and true carbon contamination values, respectively.
Here, the test dataset size is 1000. For the same test
dataset, the mean of the maximum absolute error (mean
of {maxe | ye − yte |}, L∞-norm) for the composition
ratio prediction is 0.0491. Thus, we have a set of re-
sults, (0.1293, 0.0491) for error estimations, [(mean of
{| c − ct |}, mean of {maxe | ye − yte |})]. We obtained
two sets of similar results, (0.1301, 0.0479) and (0.1423,
0.0531), for two other independent test datasets, respec-
tively.

III. RESULTS AND DISCUSSION

In general, XPS measurement results are dominated
by near-surface information, so predicting the extent of
surface contamination is a critical factor in sample prepa-
ration and interpretation. In our study, the XPS data
points were represented as a vector. This is the input
to the model and the carbon contamination and compo-
sition ratios are the outputs of the model. Instead of
the artificial neural network responsible for the predic-
tion being a single function, we can consider probabilis-
tic models. In this case, a single model can provide a
probabilistic distribution. From this approach, we can
determine the probabilistic distribution of the model’s
predictions. Of course, this allows us to make more reli-
able predictions.
Fig.2 (a) shows the XPS data used as an in-

put. The assumption used here is that only XPS
data is used for predictions of carbon contamination
and composition ratios. We did not use informa-
tion about how many different atomic species it is
composed of. It has the following carbon contami-
nation level and composition ratios. True values for
this test case are ct = 0.758, (ytAl, y

t
Cl, y

t
Ge, y

t
Nd, y

t
Pb) =

(0.011, 0.070, 0.348, 0.540, 0.029). Fig.2 (b) and (c) show
the results predicted by the neural network. In Fig.2
(b), the actual and predicted values of the composi-
tion ratios are shown simultaneously for direct com-
parison. Fig.2 (c) shows the predicted value of the
composition ratios (mean values) and the error (2σ,
σ: standard deviation) at the same time. Pre-
dicted values are c = 0.780, (yAl, yCl, yGe, yNd, yPb) =
(0.010, 0.030, 0.310, 0.552, 0.004). For the carbon con-
tamination prediction, we have 2.90% error. If we limit
our analysis to the case of predicting only 81 values, we
have an R2 = 0.990 value for predicting relative elemen-
tal abundances. Thus, compared to the average predic-
tion ability of our model, this case is a fairly large error
in the composition prediction. In our calculations, GPU-
enabled computations can realistically yield significant
acceleration in model building and utilization.

Fig.3 (a) shows the XPS data used as an input. True
values for this test case are ct = 0.678, (ytNd, y

t
Tl) =

(0.475, 0.524). In Fig.3 (b), the actual and predicted
values of the composition ratios are shown simultane-
ously for direct comparison. Fig.3 (c) shows the pre-
dicted value of the composition ratio (mean values) and
the error (2σ) at the same time. Predicted values are
c = 0.682, (yNd, yTl) = (0.482, 0.507). For the carbon
contamination prediction, we have 0.58% error. If we
limit our analysis to the case of predicting only 81 val-
ues, we have an R2 = 0.992 value for predicting relative
elemental abundances.

Fig.4 (a) shows the XPS data used as an in-
put. True values for this test case are ct =
0.365, (ytN, y

t
Rh, y

t
Ag, y

t
Ce) = (0.003, 0.496, 0.258, 0.177).

In Fig.4 (b), the actual and predicted values of the
composition ratios are shown simultaneously for di-
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FIG. 2. (a) A typical simulated XPS spectrum is a plot of
the number of electrons detected at a specific binding en-
ergy. XPS peaks correspond to the electron configuration
of the electrons within the atoms. The number of detected
electrons in each XPS peak is closely related to the amount
of element within the sampling volume. (b) An example of
predicting composition using only XPS data is shown. The
circle and cross represent the true value and predicted value,
respectively. (c) The uncertainty of the prediction can be ob-
tained with the Monte Carlo dropout method. Many different
elements are predicted to contribute with very small percent-
ages, but the uncertainty of the prediction must be taken into
account.

rect comparison. Fig.4 (c) shows the predicted value
of the composition ratio (mean values) and the error
(2σ) at the same time. Predicted values are c =
0.363, (ytN, y

t
Rh, y

t
Ag, y

t
Ce) = (0.014, 0.389, 0.328, 0.217).

For the carbon contamination prediction, we have 0.55%
error. If we limit our analysis to the case of predicting
only 81 values, we have an R2 = 0.982 value for predict-
ing relative elemental abundances.

An expert in the field who has been working with XPS
data for a long time will be able to use existing infor-
mation to roughly predict the composition and carbon
contamination of a sample, respectively. Similarly, our
artificial neural network model was trained on XPS data

FIG. 3. (a) A typical simulated XPS spectrum is a plot of
the number of electrons detected at a specific binding energy.
(b) An example of predicting composition using only XPS
data is shown. The circle and cross represent the true value
and predicted value, respectively. (c) The uncertainty of the
prediction can be obtained with the Monte Carlo dropout
method.

using a 75000 virtual training dataset. The predictive
power of this training was validated by training an arti-
ficial neural network. After training the model, a single
prediction using a single piece of XPS data takes about
7 seconds of CPU computation time (actually, 200 in-
dependent predictions) on a typical personal computer.
This reduction in composition ratio and carbon contami-
nation prediction time is the basis for XPS measurements
to become a new form of material surface analysis in the
near future. We found the model we developed to be ef-
ficient and effective in predicting elemental composition
and contamination without overfitting. With the deep
learning techniques we used, many more applications re-
lated to XPS measurements will be possible in the fu-
ture. It depends, but sometimes researchers need very
fast analyses. This is because surface contamination is
associated with some form of time delay. Therefore, the
quick analysis of contamination using deep learning that
we are looking for can be very meaningful in some situ-
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FIG. 4. (a) A typical simulated XPS spectrum is a plot of the
number of electrons detected at a specific binding energy. (b)
An example of predicting composition using only XPS data
is shown. The circle and cross represent the true value and
predicted value, respectively. (c) The uncertainty of the pre-
diction can be obtained with Monte Carlo dropout method.

ations.

IV. CONCLUSIONS

To summarise, an accurate and efficient deep learn-
ing model was developed to deduce elemental composi-
tion from XPS data. It has been demonstrated that the
model possesses expert-level predictive capabilities and
can be used to infer composition and carbon contami-
nation as a basic application. We produced a synthetic
dataset of X-ray photoelectron spectroscopy comprising
78600 spectra, using XPS parameter databases and elec-
tron scattering theory within the transport approxima-
tion. We considered 2, 3, 4, and 5 as the potential number
of atomic species present in a substance. We employed
the latest techniques in artificial intelligence to construct
a model capable of forecasting the extent of carbon con-
tamination and composition. To predict carbon contami-
nation levels and composition ratios, we utilized a Monte
Carlo dropout approach. For every prediction, we ob-
tained both the mean and variance. By employing this
approach, we were able to offer an accurate forecast and
a range of confidence for the forecast. The model that
we devised displays a strong accuracy with respect to
the coefficient of determination (R2 = 0.999) for the test
dataset when predicting the carbon contamination and
composition vector components. The model showed a
level of accuracy that could actually be used to distin-
guish the main elements contained in the actual exper-
imental data but showed significant differences in quan-
titative ratios. By using the narrow scan data used in
actual quantitative analysis, it is expected that a model
with high accuracy that can replace the current process
can be developed.
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