
Final Report
Jeong Hoon (Sian) Choi
December 11, 2024

Due Date: December 13, 2024
Group: ChatDB 94
Instructor: Prof. Wensheng Wu

1

Name: Jeong Hoon (Sian) Choi (5023184813)
Phone: +01 (323)-630-6334
Email1: choijeon@usc.edu
Email2: csian7386@gmail.com
Web Page: https://csian98.github.io
Project Github: https://github.com/csian98/StradIAN

2

https://csian98.github.io
https://github.com/csian98/StradIAN

1 Introduction
This project was conducted over the Fall semester of DSCI 551 2024, aiming to design a program for learning queries
on database system. The system was designed to help user interact with a database without requiring deep knowledge
of SQL, while also supporting natural language queries and generating sample SQL queries. The primary focus was on
enabling customers and managers in an automated trading system (StradIAN) for cryptocurrencies, currency, and indices
to retrieve and query data easily. StradIAN is a trading automation program that the author began developing in the Fall.
ChatDB was created to enhance the program, specifically improving its insufficient user interface.

2 Planned Implementation
The project, ChatDB, provides user convenient access to a database system used by a robo-advisor. The robo-advisor
system utilizes MariaDB as the DBMS, running on an Arch Linux server environment. The data to be used in this system
includes:

• Market Data (stock, Cryptocurrency, Exchange Rate, etc.)

• Customer Information (Investment amount, Share, ID, email, etc.)

• System data

• Liquidity data for funds under management (market asset ratio, deposit, withdrawal, profit for each market, etc.)

The data is stored and structured in JSON files located in etc/json/<database>/<table>.json , where each JSON file
corresponds to a table in the database.

Key tasks for the project are:

• Configuring data and execution environment (using crawlers)

• Designing the user interface

• Exploring SQL databases

• Generating sample queries with specific language constructs

• Pattern matching algorithm using JSON parsing

• Example SQL execution

• Generating natural

• Finalizing the user interface and functionalities

(Considering usign OpenAPI or Llama 3.2 for natural language processing)

3

3 Architecture Design
The project was devloped and test on an Arch Linux server environment in South Korea. MariaDB 11.6.2 was used as
the DBMS, and Python 3.12.7 served as the development environment. Data Stored in mariaDB or retrieved through the
crawler is stored as JSON files following the table schema.

The development environment details are as follows:

• CPU: AMD Ryzen9 4 Gen 5900X

• MainBoard: ASUS ROR Strix B550-XE

• RAM: G.Skill DDR4-3200 CL16 (x2)

• VGA: Nvidia ASUS ProArt RTX 4060 8 GB

• OS: 6.12.4-arch1-1

The development was done using Python code, and the object developed are as shown above. The core objects are
SystemDB and QueryParser. SystemDB is a wrapper for the MariaDB class and is used to retrieve the structure of
the stored database or fetch data by executing queries. QueryParser uses the information obtained from the tables in
SystemDB to generate sampel queries and is also used for natural language parsing and query generation.

4

These JSON files are stored in the etc/json/ directory under the respective database name and table names. Data stored
in DBMS or to be stored through a crawler is stored as a JSON file with the table name in the database name folder in
etc/json, and the table schema follows the JSON file.

4 Implementation

4.1 Functionalities
ChatDB was developed to meet the requirements of the project.
It includes functionalities to:

• Explore databases

• Obtain sample SQL queries

• Generate SQL queries with specific language constructs

• Convert natural language questions into SQL queries

Additionally, the system is designed as a server-client application, where different permissions can be granted based on
user login, allowing users to query specific tables within their permissions. Crawlers are also used to store additional data,
making the system adaptable to a variety of use cases.
(The crawler collects and stores all available data from the system.<market type>_market table, targeting the data where
trade = true is specified.)

4.2 Tech Stack
The system was built using the following technologies:
Software

5

• Arch Linux 6.12.4-arch1-1

• Python 3.12.7

• MariaDB 11.6.2

Libraries
• beautifulsoup4 4.12.3
• mariadb 1.1.11
• nltk 3.9.1
• numpy 2.0.2
• regex 2024.11.6
• selenium 4.27.1
• spacy 3.8.3
• wget 3.2

4.3 Implementation Screenshots
Server and Client run & Login
To use the system based on the assumed scenario, the interface is designed with a server-client architecture. For the
server to run, the files etc/c2c/stradian.key and etc/c2c/stradian.crt are required.
(Sample Administrator Account; ID: root | PW: root)

Explore DataBase
The SystemDB object has a Dict structure attribute. It stores all databases, tables, columns (column name, QLT || QNT,

6

detailed types, and permissions), and is used as the default in all operations, including Explore DataBase. The data is
uploaded from a JSON file. Explore DataBase provides functionality for viewing the schema and data (with OFFSET and
LIMIT options).

Obtain Sample Queries
The obtain Sample Queries feature generates sample queries divided into six keywords: default, where, group_by, having,
join, order_by, and provides explanations for each. Additionally, it offers functionalities for regenerating radom samples
using a keyword and executing the generated queries. The SystemDB object searches for available keywords for the
corresponding table, while the QueryParser generates queries by creating random columns names, conditions, and other
elements based on the available keywords. It also provides explanations for the generated queries.
(For conditional statements, when executing queries, users can directly specify numeric conditions or, if set to random, the
system retrieves a random value from the table to use in the condition.)

7

8

Obtain Sample Queries with Specific Language Constructs
The Obtain Sample Queries with Specific Language Constructs feature is identical to the Obtain Sample Queries func-
tionality, except it allows user to select specific keywords. (The keyword selection options are tailored to the actual available
options for the given table, ensuring they are executable.)

Ask Questions in Natural Language
When a user describe the desired data in natural language, the system outputs the most appropriate query. The Query-
Parser process the input natural language by parsing it into a structured format based on the template:

SELECT <#SELECT> FROM <#FROM> (JOIN <#JOIN> ON <#ON>) (WHERE <#WHERE>)
(GROUP BY <#GROUPBY> (HAVING <#HAVING>)) (ORDER BY <#ORDERBY>)

(Parentheses indicate optional components.)
The natural languge input is parsed to create a kilt, a dictionary structure with key(<#*>) corresponding to their respec-
tive real values and the template. QueryParsermatches the parsed kilt against pre-patterned explanations using Jaccard
similarity. The most similar explanation is used to refine and replace the template structure with the appropriate kilt
values. During the sample query generation process, patterned explanastions and extracted templates are stored as a dic-
tionary for future use. (To enhance response flexibility, additional descriptions are stored in etc/query/query_explain.json).
The natural language description must include precise table and column names to generate valid queries. If any kilt value
cannot be replaced during parsing, the system prompts the user to manually input the missing value, allowing the query
to be completely and executed.

9

5 Learning Outcomes

5.1 Challenges Faced
The most challenging aspect of the project was generating queries from natural language descriptions. Due to the re-
striction against using deep learning models like LLMs for more generalized query generation and interpreting natural
languages, I had to rely on pattern matching and manually coded assumptions. This approach required crafting query
templates and extracting attributes and conditions directly from user descriptions to insert them into these template.
The pattern matching process involved using numerous if-else if-else conditional statements to anticipate various possible
explanations and pre-code them. As a result, the process depended heavily on predefined patterns, leading to difficulties
in handling input descriptions that did not align with these assumptions. This limitation often prevented the system from
returning appropriate queries for more flexible or unstructured descriptions.

6 Conclusion
This project was developed to support the user interface in a robo-advisor system. The program successfully fulfills the
primary requirements of the project, including Explore Database, Obtain Sample Queries, Obtain Sample Queries
with Specific Language Constructs, and Ask Questions in Natural Language. Additionally, it provides features such as
a crawler for data storage and a login-based user interface (terminal environment), enhancing the system’s functionality
and flexibility.
Before this project, I had never studied SQL and database systems as intensively as I did during this semester. Initially, I
doubted how a language with fewer commands and limited flexibility compared to general-purpose languages likes C++
or Python, I learned the logical power of SQL, which allows for the creation and execution of infinite query variations using
its set of keywords. This experience provided me with valuable insights into the structure and capabilities of database
systems.

10

7 Future Scope
There is still room for improvement in the query generation function for natural language explanations, particularly in
terms of handling more generalized queries, I plan to enhance this feature in the future. For broader explanations, lever-
aging large language models (LLMs) seems to be the most effective approach to accurately interpret natural language
and generate the corresponding queries. Since the task at hand is less complex compared to other LLM applications, I
am confident that I can achieve more flexible question interpretation and query generation by using open-source models,
such as Meta Llama 3.2 1B, or by fine-tuning a model specifically tailored for this project.
The following is the result of a query made to the Meta Llama 3.2 3B model.

>>> Hello , you need to generate an appropr ia te query based on the input de s c r i p t i on .
The s t r u c t u r e of the database and tab l e i s as fo l l ows :
[system . crypto_market (VARCHAR symbol , BOOLEAN trade ; t rue mean t rad ing)] .
P lease generate only the query .

‘ ‘ ‘ s q l
SELECT ∗ FROM system . crypto_market WHERE trade = TRUE;
‘ ‘ ‘

>>> show the a l l symbol tha t I can trade .
‘ ‘ ‘ s q l
SELECT symbol
FROM system . crypto_market
WHERE trade = TRUE;
‘ ‘ ‘
When tasks related to natural language interpretation are assigned to LLM models, they are more likely to generate ap-
propriate queries with a higher probability, compared to the pattern matching methods that previously failed to generate
the correct query for descriptions that could not be coded.

11

	Introduction
	Planned Implementation
	Architecture Design
	Implementation
	Functionalities
	Tech Stack
	Implementation Screenshots

	Learning Outcomes
	Challenges Faced

	Conclusion
	Future Scope

